Identification of RNA editing sites in cotton (Gossypium hirsutum) chloroplasts and editing events that affect secondary and three-dimensional protein structures.

نویسندگان

  • Y Jiang
  • S L Fan
  • M Z Song
  • J N Yu
  • S X Yu
چکیده

RNA editing can alter individual nucleotides in primary transcripts, which can cause the amino acids encoded by edited RNA to deviate from the ones predicted from the DNA template. We investigated RNA editing sites of protein-coding genes from the chloroplast genome of cotton. Fifty-four editing sites were identified in 27 transcripts, which is the highest editing frequency found until now in angiosperms. All these editing sites were C-to-U conversion, biased toward ndh genes and U_A context. Examining published editotypes in various angiosperms, we found that RNA editing mostly converts amino acid from hydrophilic to hydrophobic and restores evolutionary conserved amino acids. Using bioinformatics to analyze the effect of editing events on protein secondary and three-dimensional structures, we found that 21 editing sites can affect protein secondary structures and seven editing sites can alter three-dimensional protein structures. These results imply that 24 editing sites in cotton chloroplast transcripts may play an important role in their protein structures and functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genome-wide identification and analysis of the DYW-deaminase genes in the pentatricopeptide repeat gene family in cotton (Gossypium spp.)

The RNA editing occurring in plant organellar genomes mainly involves the change of cytidine to uridine. This process involves a deamination reaction, with cytidine deaminase as the catalyst. Pentatricopeptide repeat (PPR) proteins with a C-terminal DYW domain are reportedly associated with cytidine deamination, similar to members of the deaminase superfamily. PPR genes are involved in many cel...

متن کامل

RESOPS: A Database for Analyzing the Correspondence of RNA Editing Sites to Protein Three-Dimensional Structures

Transcripts from mitochondrial and chloroplast DNA of land plants often undergo cytidine to uridine conversion-type RNA editing events. RESOPS is a newly built database that specializes in displaying RNA editing sites of land plant organelles on protein three-dimensional (3D) structures to help elucidate the mechanisms of RNA editing for gene expression regulation. RESOPS contains the following...

متن کامل

Genome Editing in Cotton with the CRISPR/Cas9 System

Genome editing is an important tool for gene functional studies as well as crop improvement. The recent development of the CRISPR/Cas9 system using single guide RNA molecules (sgRNAs) to direct precise double strand breaks in the genome has the potential to revolutionize agriculture. Unfortunately, not all sgRNAs are equally efficient and it is difficult to predict their efficiency by bioinform...

متن کامل

Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L.

RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and comp...

متن کامل

Targeted mutagenesis in cotton (Gossypium hirsutum L.) using the CRISPR/Cas9 system

The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 system has been widely used for genome editing in various plants because of its simplicity, high efficiency and design flexibility. However, to our knowledge, there is no report on the application of CRISPR/Cas9-mediated targeted mutagenesis in cotton. Here, we report the genome editing and targeted mutagenesis in uplan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2012